

# 18. Concept of discrete Energy Levels

## ◆ Definition

- ❖ Discrete energy levels are specific, **quantized energy values** that an electron in an atom or molecule can occupy. Electrons **cannot exist between these levels**, they can occupy only certain allowed states.
- ❖ This concept forms the foundation of quantum mechanics and explains why atoms emit or absorb light at specific wavelengths.
- ❖ Mathematically,  $E_n = -13.6/n^2 \text{ eV}$  ( $n=1, 2, 3, \dots$ )
- ❖ where  $E_n$  is the energy of the  $n$ th level in a hydrogen atom.

## ◆ Explanation

- ❖ According to **quantum mechanics**, electrons in atoms do not move freely but occupy certain **stationary states** called **energy levels**.
- ❖ Each level corresponds to a specific **wavefunction ( $\psi$ )** that satisfies the Schrödinger equation for that atom.
- ❖ These levels arise because the allowed electron energies must satisfy **boundary conditions** imposed by the atom's potential well.
- ❖ When an electron **jumps from a lower to a higher level**, it **absorbs energy**  
$$\Delta E = h\nu.$$
- ❖ When it **falls back**, it **emits energy** of the same amount as radiation.

$$\Delta E = E_2 - E_1 = h\nu$$

- ❖ where
  - $h \rightarrow$  Planck's constant,
  - $\nu \rightarrow$  frequency of radiation.

### ◆ Example: Hydrogen Atom

- ❖ For a hydrogen atom, energy levels are given by

$$E_n = -13.6/n^2 \text{ eV}$$

- ❖ When an electron transitions from  $n=3$  to  $n=2 \Rightarrow \Delta E = (-3.4) - (-1.51) = 1.89 \text{ eV}$
- ❖ This energy appears as a photon of visible light as a part of the **Balmer series**.

### ◆ Diagram :Energy Level Diagram for Hydrogen Atom

- ❖  $n = \infty$  (Ionization limit)



- ❖ The distance between levels decreases as 'n' **increases**.
- ❖ At  $n=\infty$ , the electron is **free** (ionized atom).