

2. Operators in Quantum Mechanics

- **Definition**

- An **operator** is a mathematical rule that acts on a wavefunction ψ to give another function.

Operators are used to extract **observable quantities** (like momentum, energy, angular momentum) from ψ .

- Mathematically: $\hat{A}\psi = a\psi$

- Example:

- Position operator, \hat{x}
- Momentum operator, \hat{p}
- Energy operator (Hamiltonian), \hat{H}

- Each act on wave functions to produce either another function or, for eigenfunctions, scale the function by some value.

- **Types of Operators**

1. Linear operators

- An operator \hat{O} is linear if: $\hat{O}(a\psi_1 + b\psi_2) = a\hat{O}\psi_1 + b\hat{O}\psi_2$

- **Example:**

Position operator, \hat{x}

Momentum operator, \hat{p}

Energy operator (Hamiltonian), \hat{H}

- It supports the superposition principle, essential for quantum theory.
- Most common quantum operators (position, momentum, energy) are linear.

2.Hermitian (self-adjoint) operators

- \hat{O} is Hermitian if: $\int \psi_1 (\hat{O} \psi_2) dx = \int (\hat{O} \psi_1)^* \psi_2 dx$
- All the eigenvalues of Hermitian operators are real.
- The eigenfunctions of Hermitian operators form an orthonormal basis.
- All physical observables correspond to Hermitian operators.

3.Unitary Operators

- A unitary operator preserves the norm of the wave function:

$$\hat{U}^\dagger \hat{U} = \hat{U} \hat{U}^\dagger = \hat{I}$$

- The probability interpretation (norm of state vector) remains unchanged by unitary operations.
- These operators are used for time evolution & transformations in Hilbert space.
- The quantum evolution operator in the Schrödinger equation is unitary.

4. Projection Operators

- An operator \hat{P} is a projection operator if: $\hat{P}^2 = \hat{P}$
- An operator that, when applied twice to a given state vector, produces the same result as applying it once is called a projection operator:
- For example, projecting a quantum state onto an eigenspace associated with a particular measurement value.

5.Fundamental Operators

- Mathematical tools that correspond to physical quantities like position, momentum, and energy.

Observable	Operator	Example/Expression
Position (x)	$x^{\hat{ }}$	Multiplication by x
Momentum (P)	$-i\hbar d/dx$	Differentiation with respect to x
Kinetic energy (T)	$p^2/2m$	Differentiation with respect to x
Potential energy (V)		Function $V(x)$ acting on wave function
Total energy (H)	$T^{\hat{ }} + V^{\hat{ }}$	The Hamiltonian operator

6. Algebra of Operators (Operator Manipulation)

- A system of rules for combining linear operators (which represent physical observables like position and momentum) through addition, multiplication, and other operations, governed by algebraic principles
- Addition:

$$(A^{\hat{ }} + B^{\hat{ }})\varphi = A^{\hat{ }}\varphi + B^{\hat{ }}\varphi$$

- Multiplication:

$$(A^{\hat{ }} B^{\hat{ }})\varphi = A^{\hat{ }}(B^{\hat{ }}\varphi)$$

- Commutator:

$$[A^{\hat{ }}, B^{\hat{ }}] = A^{\hat{ }} B^{\hat{ }} - B^{\hat{ }} A^{\hat{ }}$$