


MILLER INDICES

❖ Introduction:

- ❖ Miller indices were introduced in 1839 by the British mineralogist William Hallowes Miller.
- ❖ The method of representing orientation of crystal planes was historically known as the Mellerian system and the indices as Mellarian.
- ❖ The planes passing through the lattice points are called Lattice planes.

❖ Definition:

- ❖ Miller evolved a method to designate a set of parallel planes in a crystal by 3 numbers (h k l) known as Miller indices. (or)
- ❖ The reciprocal of the intercepts made by the plane on the crystallographic axes (when reduced to smallest numbers) are known as Miller indices.
- ❖ Miller indices are represented by a set of numbers (h k l), used to identify the plane or surface in a crystal.
- ❖ Steps in the determination of Miller indices (or) procedure for finding Miller indices:

- ❖ **Step 1:** Choose the System of three coordinate axes (Crystallographic axes) x, y, & z.
- ❖ **Step 2:** Determine the intercepts P, Q, & R of the required plane ABC on these axes
i.e., $OA = p$, $OB = q$ and $OC = r$.
- ❖ **Step 3:** Take ratio of reciprocals of the intercepts, i.e., $1/p : 1/q : 1/r$
- ❖ **Step 4:** Convert these reciprocals into integers by multiplying each one of them with their LCM pqr
i.e., $1/p \times pqr : 1/q \times pqr : 1/r \times pqr$ (LCM=pqr)
- ❖ **Step 5:** Reduce to lowest terms & enclose these integers in small parentheses.
i.e. Miller indices (h k l) of the crystal $\rightarrow (qr : pr : pq) = (hkl)$

Example 1:

- ❖ **To obtain Miller indices for the intercepts a , $b/2$, $3c$ in a cubic crystal.**
- ❖ Step 1: A plane makes intercepts: a , $b/2$, $3c$
- ❖ Step 2: Intercepts: $1, 1/2, 3$ (since lowest ratio's when $a=b=c$)
- ❖ Step 3: Reciprocals $1/1, 2/1, 1/3$
- ❖ Step 4: Multiplying with their LCM 3
 - ❖ $1 \times 3, 2 \times 3, 1/3 \times 3 \rightarrow 3, 6, 1$
- ❖ Step 5: Miller indices of the given crystal
 - (hkl) = (361).

Example 2:

- ❖ **To obtain Miller indices for the intercepts 2 , 3 , & 4 in a cubic crystal.**
- ❖ Step 1: A plane makes intercepts as 2 , 3 , & 4 along x , y & z axes
- ❖ Step 2: Intercepts $\rightarrow 2, 3, 4$ (since lowest ratio's when $a= b=c$)
- ❖ Step 3: Reciprocals $\rightarrow 1/2, 1/3, 1/4$
- ❖ Step 4: Multiplying with their LCM 12)
 - $1/2 \times 12, 1/3 \times 12, 1/4 \times 12 \rightarrow 6, 4, 3$
- ❖ Step 5: Miller indices of the chosen crystal
 - (hkl) = (643)

Important salient features of Miller Indices

- ❖ Miller indices give the orientation of the crystal plane.
- ❖ A plane parallel to one of the coordinate axes has an intercept of infinity.
- ❖ If the miller indices of two planes have the same ratio [i.e., (844) & (422) or (211)], then the planes are parallel to each other.
- ❖ All parallel planes have the same miller indices.
- ❖ Plane passing through origin is defined in terms of Parallel planes having non-zero intercepts.
- ❖ If (hkl) are the miller indices then $a/h, b/k$ & c/l are the intercepts for corresponding lattice parameters a, b & c .
- ❖ If (hkl) are the Miller indices of the plane, then the plane cuts the axes into h, k, l equal segments respectively.