

1.6. HEISENBERG's UNCERTAINTY PRINCIPLE(HUP)

Introduction:

- ❖ Werner Heisenberg proposed a very interesting principle in 1927, which is a direct consequence of the dual nature of matter (wave-particle duality), known as HUP.

Statement:

- It is impossible to measure both the position and momentum of a particle simultaneously to any desired degree of accuracy.

Qualitative Explanation:

- The product of the uncertainties in the knowledge of position and momentum must be at least on the order of Planck's constant (\hbar).

Mathematical Expression:

- More precisely, "The product of uncertainties in determining the position and momentum of the particle is never smaller than $\hbar/4\pi$ ".
- **Therefore**, $\Delta x \cdot \Delta p_x \geq \hbar/4\pi$ ----- (1)

(OR)

$$\Delta x \cdot \Delta p_x \geq \hbar/2 \quad \text{----- (2)} \quad (\text{since } \hbar/2\pi = \hbar)$$

where: Δx is the uncertainty in position

Δp_x is the uncertainty in momentum

\hbar is Planck's constant

Explanation:

(i) If $\Delta x = 0$:

$$\Delta x \cdot \Delta p_x = \hbar/4\pi \Rightarrow \Delta p_x = \hbar/4\pi \Delta x$$

$$\Delta p_x = \hbar/4\pi \cdot 0$$

$$\Delta p_x = \hbar/0$$

$$\Delta p_x = \infty \quad \text{----- (3)}$$

Therefore, the position of a particle is measured accurately ($\Delta x = 0$), then the uncertainty in its momentum becomes infinite ($\Delta p_x = \infty$).

(ii) If $\Delta p_x = 0$:

$$\Delta x \cdot \Delta p_x = \hbar/4\pi \Rightarrow \Delta x = \hbar/4\pi \Delta p_x$$

$$\Delta x = h/4\pi m$$

$$\Delta x = h/m$$

$$\Delta x = \infty \quad \text{-----}(4)$$

Therefore, the momentum of a particle is measured accurately ($\Delta p_x = 0$), then the uncertainty in its position becomes infinite ($\Delta x = \infty$).

Significance:

- The Heisenberg uncertainty principle is significant for microscopic particles.
- It implies that the energy of a photon does not significantly affect the position and velocity of large objects.

Applications:

- (i) It helps in calculating the energy of a particle in a potential box.
- (ii) It proves the non-existence of electrons in the nucleus.
- (iii) It proves the existence of protons/neutrons in the nucleus.
- (iv) It calculates the binding energy of an electron in an atom.
- (v) Calculating the radius of Bohr's orbit in an atom.
- (vi) It determines the frequency of radiation emitted by an excited atom.