

8. Expectation Value in Quantum Mechanics

- ❖ The concept of the **expectation value** is central to quantum mechanics, as it connects the mathematical description of a quantum system (the wave function and operators) to the measurable, observable properties of the system.

❖ **Definition:**

- ❖ The expectation value of a dynamical quantity is the **mathematical average** for the result of a single measurement performed on a system.
- ❖ In other words, if one were to perform many measurements of a physical quantity (like position, momentum, or energy) on a system described by the wave function $|\psi\rangle$, the expectation value represents the average of all those measurements.
- ❖ In quantum mechanics, every measurable physical quantity such as position, momentum, or energy is represented by a linear Hermitian operator acting on the system's wave function $\psi(x,t)$

The expectation value of an operator $A^\hat{}$ gives the average value of the observable quantity it represents: $\langle A^\hat{} \rangle = \int \psi^*(x,t) A^\hat{} \psi(x,t) dx$

❖ **Where:**

- ❖ $\langle A^\hat{} \rangle$: Expectation value (average measurable value) of the operator $A^\hat{}$.
- ❖ $\psi(x,t)$: Wave function representing the state of the quantum system.
- ❖ $\psi^*(x,t)$: Complex conjugate of the wave function.
- ❖ dx : Integration over all relevant degrees of freedom (for a multi-particle system, it spans all spatial coordinates).
- ❖ If $\psi(x,t)$ is normalized, i.e., $\int \psi^*(x,t) \psi(x,t) dx = 1$
- ❖ then the expectation value formula directly yields a proper average.
- ❖ **Example: Expectation Value for an Eigenfunction**
- ❖ If the wave function ψ is an eigenfunction of the operator $A^\hat{}$ with eigenvalue a , such that $A^\hat{}\psi = a\psi$, and the wave function is normalized, then the expectation value is **Simply**: $\langle A^\hat{} \rangle = a$

- ❖ This means that when a quantum system is in an eigen state of an observable, a measurement will always return the corresponding eigenvalue, making the average (expectation value) exactly that eigenvalue.

❖ **Mathematical Examples:**

❖ **1.Expectation Value of Momentum**

- ❖ For momentum along the x-axis, the operator is $\hat{P}(x) = -i\hbar \partial/\partial x$

❖ Hence, $\langle \hat{P} x \rangle = \int \psi^*(x,t) (-i\hbar \partial/\partial x) \psi(x,t) dx$

❖ Simplified form: $\langle \hat{P} x \rangle = -i\hbar \int \psi^*(x,t) \partial \psi(x,t) / \partial x dx$

❖ **2.Expectation Value of Energy**

- ❖ The Hamiltonian operator \hat{H} represents the total energy of the system and appears in the Schrödinger equation: $i\hbar \partial \psi / \partial t = \hat{H} \psi$

- ❖ The expectation value of energy is given by:

$$\langle E \rangle = \int \psi^*(x,t) \hat{H} \psi(x,t) dx = \int \psi^*(x,t) (i\hbar \partial / \partial t) \psi(x,t) dx$$