

7.EIGEN VALU- EIGEN FUNCTION – EIGEN EQUATION

➤ a) Eigen value

➤ An **eigenvalue** is a special value associated with an **operator** that acts on a function (or vector) and gives back the same function multiplied by a constant. That constant is called the **eigenvalue**.

➤ **Mathematically:** $A^{\wedge} \psi(x) = a \psi(x)$

➤ **Here:**

➤ A^{\wedge} → Operator

➤ $\psi(x)$ → Function (called Eigenfunction)

➤ a → Constant (called Eigenvalue)

➤ When the operator A^{\wedge} acts on ψ , the function doesn't change its form, only its magnitude changes by a factor 'a'.

➤ **Example:**

➤ Let the operator $\Theta^{\wedge} = d^2/dx^2$ and $\phi(x) = e^{-2x}$ then

$$\Theta^{\wedge} \phi(x) = d^2/dx^2 (e^{-2x})$$

$$\Theta^{\wedge} \phi(x) = 4 e^{-2x}$$

$$\Theta^{\wedge} \phi(x) = 4 \phi(x)$$

➤ **Here:**

➤ Θ^{\wedge} → Operator

- $\phi(x) \rightarrow$ Eigenfunction
- 4 → Constant called Eigenvalue.
- **Physical Significance of eigen values:**
 - The eigenvalue, denoted as a , represents the measured value, or possible outcome, when an operator acts on its eigen function.
 - Only certain discrete values are allowed as results of measurement in quantum mechanics, making this concept fundamental for the quantization of observables.
 - Eigenvalues for simple operators and functions can be found analytically, but more complicated systems may require numerical or approximate methods.
 - The collection of all eigenvalues of an operator is known as its spectrum.

➤b) Eigenfunction

- **Definition:**
 - An **eigenfunction** is a special type of function that, when operated upon by an operator, reproduces itself multiplied by a constant (the eigenvalue).
 - It represents a *state* of the system that remains unchanged (in shape) under the action of a given operator — only scaled by a factor.
- **Mathematically:** $A^\wedge \psi(x) = a \psi(x)$
- **Here:**
 - $A^\wedge \rightarrow$ Operator
 - $\psi(x) \rightarrow$ Eigenfunction
 - $a \rightarrow$ Constant (called Eigenvalue)

- When the operator A^{\wedge} acts (operated) on ψ , the function doesn't change its form, only its magnitude changes by a factor 'a'.

➤ Requirements for an Eigen Function:

- To qualify as an eigen function $\phi(x)$, the function must fulfill the following requirements:
 - $\Psi(x)$ must be single valued everywhere.
 - $\Psi(x)$ must be square integrable, meaning the integral of its modulus squared must be finite.
 - $\Psi(x)$ must be continuous everywhere and possess a continuous derivative.
 - $\Psi(x)$ should remain finite and vanish as $x \rightarrow \pm\infty$.

➤c) Eigen Equation

➤ Definition:

- The **eigen equation** (or eigenvalue equation) is the mathematical relationship that connects an operator, its eigenfunction, and eigenvalue.

➤ Mathematically: $A^{\wedge}\psi(x)=a\psi(x)$

➤ Here:

- A^{\wedge} → Operator
- $\Psi(x)$ → Eigenfunction
- a → Constant (called Eigenvalue)