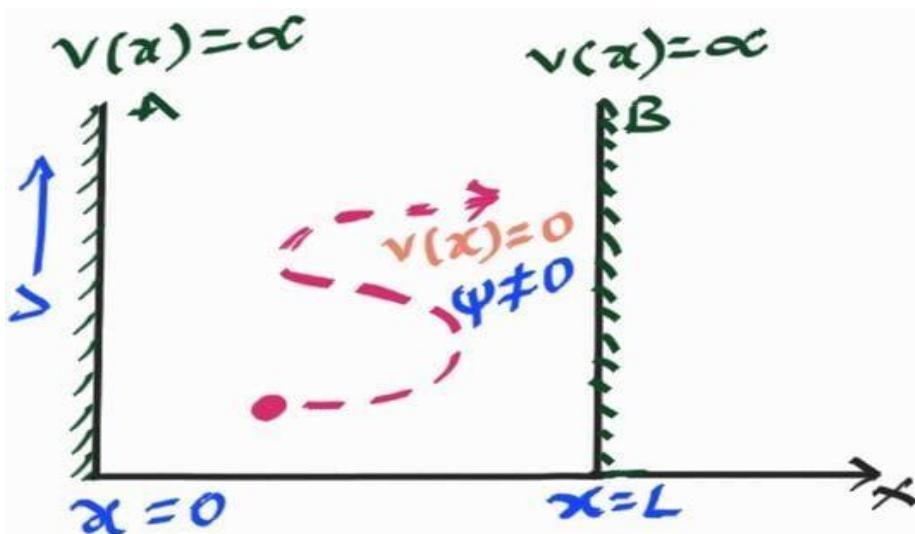


10.PARTICLE IN ONE DIMENSIONAL BOX

Introduction:

The "particle in a one-dimensional potential box" is a fundamental concept in quantum physics(mechanics), and the solutions to the Schrodinger equation for this model was developed by Erwin Schrödinger.

- Let us consider a particle of mass 'm' moving along the x-axis enclosed in a 1-D potential box as shown in figure.



- Since the walls have infinite potential, the particle does not penetrate out from the box. **i.e.,** Potential energy of the particle $V=\infty$ at the walls of the box.
- But the particle is free to move between the walls A & B at $x=0$ & $x=L$.

Boundary conditions:

- The potential energy of particle is:

$$V(x) = 0 \text{ for } 0 < x < L \text{-----(1)}$$

$$V(x) = \infty \text{ for } 0 \geq x \geq L \text{-----(2)}$$

- The **TISWE** for a free particle is

$$\frac{\partial^2 \Psi}{\partial x^2} + 8\pi^2 m(E/h^2) \Psi = 0 \quad \dots \dots \quad (3)$$

- Let $8\pi^2mE/h^2 = k^2$ ----- (4)

- From (2) & (3) $\Rightarrow \partial^2\psi/\partial x^2 + k^2\psi = 0$ ----- (5)

- The general solution for (4) is

$$\Psi(x) = A \sin kx + B \cos kx \quad \dots \quad (6)$$

Where: A, B \rightarrow Two constants

k -> wave vector (or) wave no.

Boundary condition (i): $\psi(x) = 0$ at $x = 0$

- **From (5)** $\Rightarrow 0 = A \sin(kx) + B \cos(kx)$

$$0 = 0 + B \Rightarrow B = 0 \quad (\because \sin 0 = 0, \cos 0 = 1)$$

$$\therefore \psi(x) = A \sin(kx) \text{ (or) } \psi_n = A \sin(kx) \quad \dots (7)$$

Boundary condition (ii): $\psi(x) = 0$ at $x = L$

- **From (6)** $\Rightarrow 0 = A \sin(kL)$
- **Since**, $A \neq 0 \Rightarrow \sin(kL) = 0$

$$\sin(kL) = \sin(n\pi) \quad (\because \sin(n\pi) = 0)$$

$$kL = n\pi$$

$$\Rightarrow k = n\pi/L$$

$$\Rightarrow k^2 = n^2\pi^2/L^2 \quad \dots (8)$$

- **From (7)** $\Rightarrow \psi(x) = A \sin(n\pi x/L) \quad \dots (9)$

Energy of the particle:

- From (3) & (7) $\Rightarrow 8\pi^2 m E / h^2 = n^2 \pi^2 / L^2$

$$\Rightarrow E = n^2 h^2 / 8mL^2 \quad \dots (10)$$

Energy levels of the particle:

$$\text{For energy level 1, } n=1 \Rightarrow E_1 = h^2 / 8mL^2$$

$$\text{For energy level 2, } n=2 \Rightarrow E_2 = 2^2 h^2 / 8mL^2 = 2^2 E_1$$

$$\text{For energy level 3, } n=3 \Rightarrow E_3 = 3^2 h^2 / 8mL^2 = 3^2 E_1$$

- The general equation for energy levels is

$$E_n = n^2 E_1 \quad \dots (11)$$

- **From (10)**, Energy levels of an electron are discrete.

Evaluation of A:

- To find A value by applying the normalization conditions over the integral "0 to L"

$$\int_0^L |\psi(x)|^2 dx = 1 \quad \dots (12)$$

- **From (8)** $\Rightarrow \psi(x) = A \sin(n\pi x/L)$

$$\therefore \int_0^L A^2 \sin^2(n\pi x/L) dx = 1$$

$$A^2 \int_0^L \sin^2(n\pi x/L) dx = 1$$

$$A^2 \int_0^L 1 dx - A^2 \int_0^L \cos(2n\pi x/L)/2 dx = 1$$

$$A^2 [x/2]_0^L - A^2 [\cos(2n\pi x/2L)] = 1$$

$$A^2 (L/2) - A^2 [0] = 1$$

$$A^2 (L/2) = 1$$

$$A^2 = 2/L$$

$$A = \sqrt{2/L} \quad \text{---(13)}$$

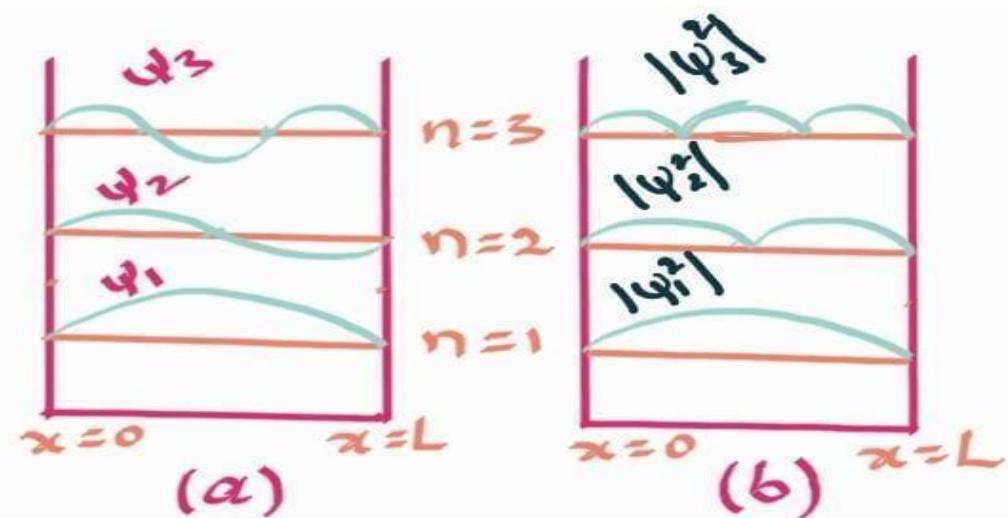
- **The normalized wave function** of the particle

$$\psi_n = \sqrt{2/L} \sin(n\pi x/L) \quad \text{---(14)}$$

(or)

$$\psi(x) = \sqrt{2/L} \sin(n\pi x/L) \quad \text{---(15)}$$

- The normalized wave functions ψ_1 , ψ_2 , and ψ_3 in (fig a) represent the *normalized wave functions* of a particle in a one-dimensional box of length L and each ψ_n corresponds to a *quantum state* with quantum number $n=1, 2, 3, \dots$



- **Number of Nodes:** As 'n' increases, the number of *nodes* (points where $\psi = 0$ inside the box) also increases like ψ_1 has **no nodes**, ψ_2 has **one node**, ψ_3 has **two nodes**, and so on.
- **Probability Density ($|\psi_n|^2$):** The plots on the right (fig b) show $|\psi_n|^2$, which gives the *probability distribution* of finding the particle at different positions and higher n values give *more oscillations*, meaning the particle has *more regions* of high & low probability inside the box.