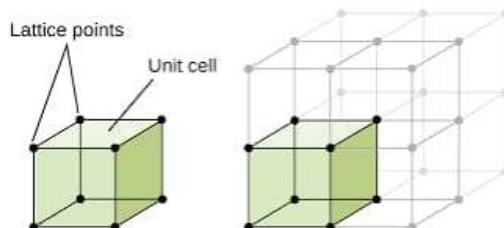
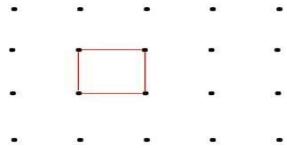


UNIT-1 CRYSTALLOGRAPHY AND MATERIAL CHARACTERIZATION

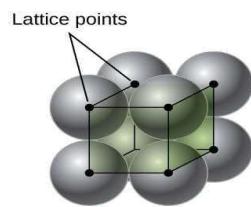
INTRODUCTION - UNIT CELL


INTRODUCTION

- ❖ The word “crystallography” is derived from the Greek words:
- ❖ **1.Crystallon:** Cold/frozen drop, which means extending to all solids with some degree of transparency. **2.Grapho:** Write.Hence crystallography means “the science of describing or writing about crystals.”
- ❖ Crystallography or crystal physics is the branch of physics that studies all types of crystals and their physical properties.
- ❖ It determines the actual structure of crystalline solids using x-rays, neutron beams, and electron beams.
- ❖ Solids can be broadly classified based on the arrangement of constituent units, like atoms, molecules, or ions. They are:
- ❖ **1.Crystalline Solids:** A substance where the arrangement of units of matter is *regular & periodic* is called a crystalline solid.
- ❖ Crystalline solids have *directional properties* and hence are called *anisotropic* substances.
- ❖ Crystalline Solids have a sharp range of melting points.
- ❖ **2. Non-crystalline/Amorphous Solids:** A substance where the arrangement of units of matter is in a *non-orderly manner (random distribution)* is called a non-crystalline/amorphous solid.
- ❖ Non-crystalline solids have a wide range of melting points and do not possess a regular shape.
- ❖ They *do not have directional properties* and so they are called *isotropic* substances.
- ❖ Examples: Glass, Plastic, Rubber.

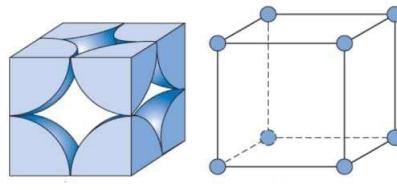

UNIT CELL

- ❖ The smallest repeating unit in a crystal lattice that shows the full symmetry of the entire crystal structure is called the unit cell.
- ❖ It acts as a fundamental building block, which can generate the complete crystal by repeating itself in 3-D space.

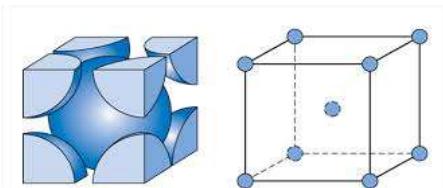


- ❖ The size and shape of the unit cell are decided by primitives (**a, b, c**) and interfacial angles (α, β, γ).

- ❖ Different ways of unit cells as follows

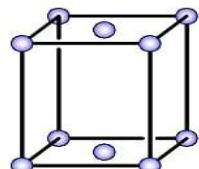


Unit cell in 2D


Unit cell in 3D

- ❖ A unit cell can be classified into two types:
- ❖ **1. Primitive unit cell (simple cell):**
- ❖ The Primitive unit cell contains lattice points *only at the corner*.
- ❖ The number of lattice points per unit cell is **1** and it is a *minimum volume* unit cell.
- ❖ Example: Simple Cubic unit cell.

- ❖ **2. Non-primitive Unit Cell (Multiple Cell):**


- ❖ A non-primitive unit cell contains lattice points at the *corners and at other positions within the cell*.
- ❖ Examples: I, F and C.
- ❖ **Body-Centred (I):** Contains lattice points at *all corners* and one additional point at the *center of the body*.

- ❖ **Face-Centred (F):** Contains lattice points at *all corners* and one additional point at the *center of each of the six faces*.

- ❖ **Base-Centred (C):** Contains lattice points at *all corners* and one additional point at the *center of two opposite faces(bases)*.

