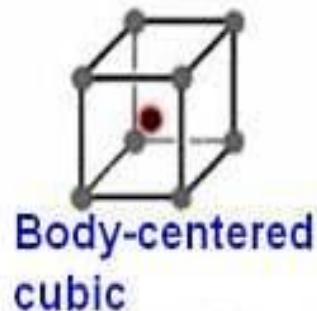
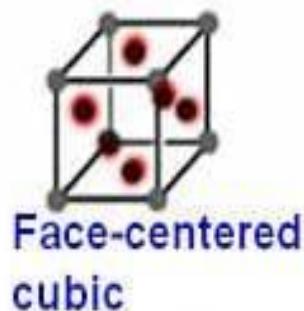
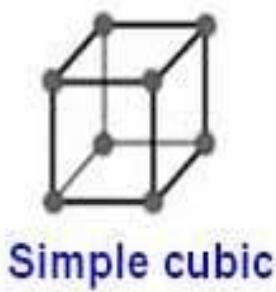


CRYSTAL STRUCTURE OR CRYSTAL SYSTEMS

- ❖ **Definition:** A crystal structure is the specific, ordered, and repeating arrangement of atoms or ions or molecules within a crystalline solid.
- ❖ In a crystal, the building units (atoms, ions, or molecules) are arranged in a 3D periodic pattern that extends throughout the material.
- ❖ This arrangement is described using a lattice and a basis.




- ❖ **Because of this repeating arrangement of atoms:**
 - (i) Crystals exhibit definite geometrical shapes.
 - (ii) They possess characteristic cleavage planes (smooth flat surfaces).
 - (iii) They show unique physical properties.

Classification of Crystal Structures

- ❖ All crystal structures can be categorized into 7 unique crystal systems based on lattice parameters (a , b , c and angles α , β , γ).
- ❖ These systems, when combined with possible lattice centering, give rise to 14 Bravais lattices.
- ❖ Seven Crystal Systems with 14 Bravais lattices are as follows....

1. Cubic System

- ❖ Most symmetrical systems with unit cells, shaped like a cube.
- ❖ **Parameters:** $a = b = c$; $\alpha = \beta = \gamma = 90^\circ$
- ❖ This system has **3 Bravais lattices**. They are:
 - (i) Simple Cubic (P) → **Example:** Polonium (Po)
 - (ii) Body-Centered Cubic (I) → **Examples:** Sodium (Na), Potassium (K)
 - (iii) Face-Centered Cubic (F) → **Examples:** Copper (Cu), Gold (Au)

2. Tetragonal System

- ❖ Similar to the cubic system, but one axis is longer or shorter, forming a rectangular prism with a square base.
- ❖ **Parameters:** $a = b \neq c$; $\alpha = \beta = \gamma = 90^\circ$
- ❖ This system has **2 Bravais lattices**. They are:
 - (i) Simple Tetragonal (P)
 - (ii) Body-Centred Tetragonal (I)

- ❖ **Examples:** Tin (Sn), TiO_2 , SnO_4

3. Orthorhombic System

- ❖ All three axes are of different lengths, but meet at right angles.
- ❖ **Parameters:** $a \neq b \neq c$; $\alpha = \beta = \gamma = 90^\circ$
- ❖ This system has **4 Bravais lattices**. They are:
 - (i) Simple Orthorhombic (P)
 - (ii) Body-Centred Orthorhombic (I)
 - (iii) Base-Centred Orthorhombic (C)
 - (iv) Face-Centred Orthorhombic (F)

- ❖ **Examples:** Sulphur (S), PbCO_3 , BaSO_4 , KNO_3

4. Monoclinic System

- ❖ Three axes of unequal lengths, with one angle not equal to 90° .
- ❖ **Parameters:** $a \neq b \neq c$; $\alpha = \gamma = 90^\circ$, $\beta \neq 90^\circ$
- ❖ This system has **2 Bravais lattices**. They are:
- ❖ (i)Simple Monoclinic (P) (ii)Base-Centred Monoclinic (C)

❖ **Examples:** Gypsum, Coyote, Orthoclase Feldspar

5. Triclinic System

- ❖ Least symmetrical system; all axes of different lengths and none of the angles are 90° .
- ❖ **Parameters:** $a \neq b \neq c$; $\alpha \neq \beta \neq \gamma \neq 90^\circ$
- ❖ This system has **1 Bravais lattice**. That is (i)Simple Triclinic (P)

❖ **Examples:** $\text{CuSO}_4 \cdot 5\text{H}_2\text{O}$ (Blue vitriol), H_3BO_3 (Sassolite), $\text{K}_2\text{Cr}_2\text{O}_7$

6. Hexagonal System

- ❖ Features a four-axis system: three equal axes in one plane intersect at 120° , and a fourth axis perpendicular to them.
- ❖ **Parameters:** $a = b \neq c$; $\alpha = \beta = 90^\circ$, $\gamma = 120^\circ$
- ❖ This system has **1 bravais lattice**. That is:
- ❖ (i)Simple Hexagonal (P)

- ❖ **Examples:** Zn, Cd, SiO_2

7. Trigonal (Rhombohedral) System

- ❖ A cube distorted along one of its body diagonals.
- ❖ **Parameters:** $a = b = c$; $\alpha = \beta = \gamma \neq 90^\circ$
- ❖ This system has **1 bravais lattice**. That is (i)Simple Trigonal (P)

- ❖ **Examples:** Quartz, CaCO_3 , As_2S_3

BRAVAIS LATTICE

- ❖ The Bravais lattices were introduced by Auguste Bravais in 1848.
- ❖ **Definition:** Bravais lattice is a 3-D arrangement of points in which each lattice point has an identical environment and represents the position of identical atoms in the crystal.
(or)
- ❖ Bravais lattice is a 3-D arrangement of identical atoms at lattice points such that every point has the same surroundings.
(or)
- ❖ If all the atoms at lattice points in the unit cell are identical, then it is called Bravais lattice.
- ❖ Bravais lattices are used to describe the orderly arrangement of atoms in a crystal/unit cell.
- ❖ Each point has one or more atoms in the actual crystal and if the points are connected by lines, a crystal lattice is formed.
- ❖ 7 types of crystal systems + 4 lattice centering types = 14 Bravais lattices (based on primitives a , b , c and interfacial angles α , β & γ).
- ❖ The 14 types of Bravais lattices are: 3 in CS, 2 in TS, 4 in OS, 2 in MS, 1 in TS, 1 in HS & 1 in RS as explained above.