

SOLAR CELL

- **Introduction:**

- In 1883, American inventor Charles Fritts made the first solar cell from Selenium.
- These cells supply current without any external source of emf (Battery).
- Solar cells are also called photovoltaic cells or solar energy converters.

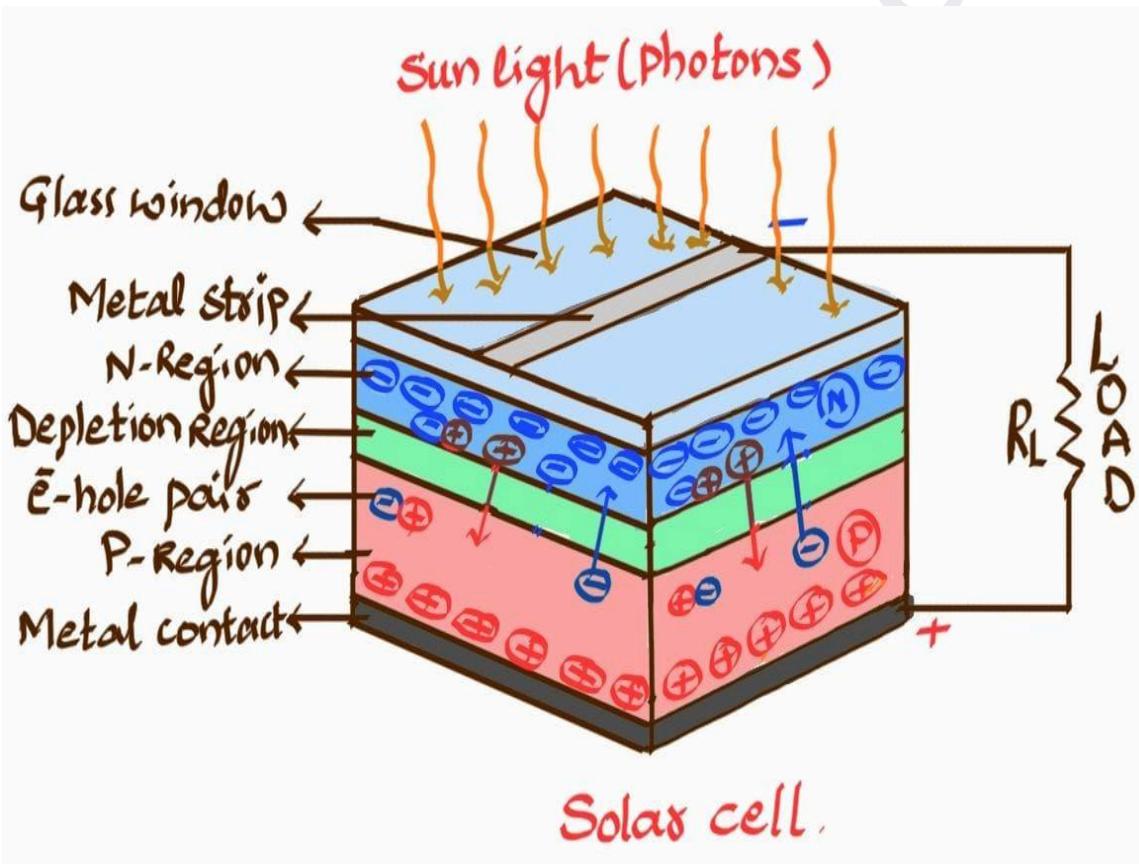
- **Definition:**

- A P-N junction diode which operates under **zero bias** and converts light energy directly into electrical energy through photovoltaic effect is called Solar cell.
- Generally, individual Solar cells can be combined to form Solar panels.

- The common single junction silicon Solar cell can produce voltage 0.5V to 0.6V.

- **Symbol of Solar Cell:**

symbol of solar cell.

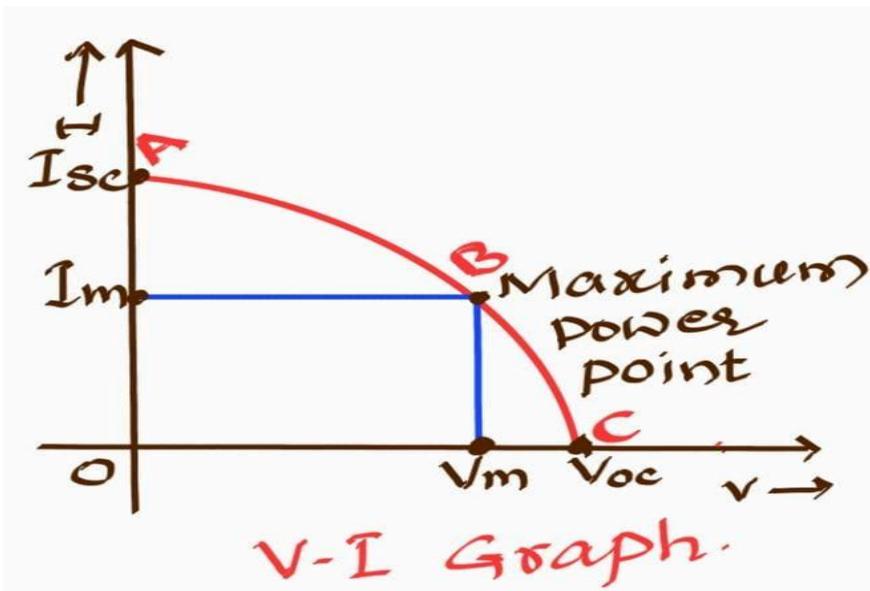

- **Working principle of solar cell:**

- The solar cells work based on the principles of photovoltaic effect. The Photovoltaic Effect is the photogeneration of charge carriers in light absorbing materials as a result of absorption of light radiation.

- **Construction of Solar Cell:**


- The main conditions while selecting a material for solar cell construction:
 - i) Band gap (1 to 2 eV)
 - ii) High optical absorption
 - iii) Electrical conductivity.
- iv) Commonly used Semiconductors for Solar Cells are: Si, GaAs, CdTe, Cu(InGa)Se₂.

- A simple Solar cell consists of a P-N Junction diode having a large junction surface(depletion region) to allow large sunlight(photon) through a glass window.
- In this P-N Junction diode the P-region(Base) is very thick (100×10^{-6} m) and the Holes generated from electron-hole pairs migrate toward this region.
- The N-region(Emitter) is very thin (0.3×10^{-6} m) so that the light(photon) incident on it reaches the depletion region where the electron-hole pairs are generated.
- Metal Strips(Front Contact) are conducting metal lines placed on top of the cell. They act as the **-ve** terminals by collecting and carrying the electrons generated in the N-region.
- Metal Contact (Back Contact) is the bottom layer, providing a conductive base for the entire cell. It serves as the **+ve** output terminal by collecting and transferring holes to the external circuit or load resistance (R_L).



- **Working of solar cell:**
- The following steps are involved in the working of a Solar cell, when light strikes on it.
- **1. Absorption of light:**
- When light strikes the solar cell, photons are absorbed by the semiconductor materials, primarily Silicon.

- **2. Generation of charge carriers (e-h pair):** These absorbed photons excite electrons, causing them to break the covalent bond and create electron-hole pairs in both the P and N sides of the depletion region(junction).
- **3. Separation of Charge Carriers:**
- These electrons - holes reach the depletion region by diffusion. At the same time, the p-n junction(depletion region) acts as a barrier and creates an electric field. Due to this internal electric field, electrons move toward the metal strip through the N- region, and holes move toward the metal contact through the P- region.
- **4. Generation of dc current:**
- This movement of charge carriers generates dc electric current or voltage of 0.6 volt.
- **5. Collection of dc current:**
- This dc current is collected by the metal electrodes(ring & contact) and flows through the external load (R_L).
- The dc current is directly proportional to the illumination and also depends on the surface area being exposed to light.
- **V-I characteristics of solar cell:**
- The I-V characteristics of a solar cell can be determined by connecting load resistance across the voltmeter in series with the ammeter.

- By keeping the light intensity constant and varying the load resistance (R_L) in a sequential manner to observe corresponding voltmeter and Ammeter readings.
- A graph is plotted by taking voltage and current along the x and y axis with the given scale; obtaining an exponential curve decay in power.

- The curve passes through 3-significant points:
- **A. Short circuit current (I_{sc}):**
- It occurs on a point of the curve, where the voltage is zero. At this point the power output of the solar cell is zero.
- **B. Open circuit voltage (V_{oc}):**
- It occurs on a point of the curve, where the current is zero. At this point the power output of the solar cell is zero.
- The product of above two quantities, I_{sc} & V_{oc} gives the ideal power of the cell.
- Therefore Ideal power, $P_{ideal} = V_{oc} \times I_{sc}$ ----- (1)
- **C. Maximum power (P_{max}):**
- The cell delivers the maximum power, where the product $V_m I_m$ is maximum.
- The position of the maximum power is the area of the largest rectangle that can be formed in the V-I curve.
- Therefore $P_{max} = V_m I_m$ ----- (2)
- **Fill Factor (F_f):**
- The ratio of Maximum power to Ideal power of the cell is called Fill Factor
- Therefore, Fill factor, $F_f = P_{max} / P_{ideal}$

$$\Rightarrow F_f = (V_m I_m) / (V_{oc} \times I_{sc})$$
- **Where:** V_{oc} is open circuit voltage
I_{sc} is short circuit current

- **Energy conversion Efficiency (η):**
- It is the percentage of power converted and collected, when a solar cell is connected to an electrical circuit.
- It is the ratio of maximum useful power (P_{max}) to the product of input light irradiance & surface area of the solar Cell.
- Therefore, $\eta = P_{max}/(E \times A_c)$

$$\eta = V_m I_m / (E \times A_c)$$

- **Where:** E is input light irradiance in W/m^2
 A_c is surface area of the cell in m^2

- **Applications of Solar cell:**

- It is used to charge batteries.
- It is used for power calculators & wrist watches.
- It is used in satellites and spacecraft to provide electrical energy.
- It is used in telecommunication systems.
- It is used for electrical power supply to remote villages, agriculture.
- It is used in ocean navigation aids.
- It is used in light meters.
- It has industrial applications such as Cathode protection, Alarm systems, Defense equipment, and etc.

- **Advantages of Solar Cells:**

- No pollution and not harmful to the environment.
- Easy to operate.
- Noise free.
- Long life.
- Low maintenance cost.

- **Disadvantages of Solar Cell:**

- High cost of installation.
- Still, it has low efficiency.
- Large area is needed to produce high power.
- Less energy is produced during cloudy days and at night.