DISTINCTION BETWEEN P-TYPE & N-TYPE SC'S

Feature	N-Type Semiconductor	P-Type Semiconductor
Doping Impurity Type	Doped with pentavalent impurities (Group 15 elements). These elements have 5 valence electrons.	Doped with trivalent impurities (Group 13 elements). These elements have 3 valence electrons.
Examples of Impurities	Phosphorus (P), Arsenic (As), Antimony (Sb), Bismuth (Bi).	Boron (B), Aluminum (Al), Indium (In), Gallium (Ga).
Electron Contribution/Acceptance	The impurity atom donates one excess electron to the crystal lattice.	The impurity atom accepts an electron from a neighboring silicon/germanium atom, creating a "hole".
Name of Impurities	Called Donor Impurities because they donate free electrons.	Called Acceptor Impurities because they accept electrons (creating holes).
Majority Charge Carriers	Electrons are the majority charge carriers. Due to the donated electrons, the concentration of free electrons is much higher than holes.	Holes are the majority charge carriers. Due to the accepted electrons (creating holes), the concentration of holes is much higher than free electrons.
Minority Charge Carriers	Holes are the minority charge carriers. They are generated due to thermal excitation.	Electrons are the minority charge carriers. They are generated due to thermal excitation.
Overall Charge	Electrically neutral . The atoms themselves are neutral; the doping just adds mobile charge carriers.	Electrically neutral . The atoms themselves are neutral; the doping just adds mobile charge carriers.

Fermi Level Position	The Fermi energy level (E_F) shifts closer to the Conduction Band (CB), lying between the conduction band and the donor energy level.	The Fermi energy level (E_F) shifts closer to the Valence Band (VB) , lying between the valence band and the acceptor energy level.
Energy Band Diagram	A donor energy level (E _D) is created just below the conduction band, representing the energy level of the donated electrons.	An acceptor energy level (E_A) is created just above the valence band, representing the energy level where electrons can be accepted from the valence band.
Notation	Often denoted as n-type , for negative charge carriers (electrons).	Often denoted as p-type , for positive charge carriers (holes).
Current Conduction	Primarily due to the movement of free electrons.	Primarily due to the movement of holes.
Diagram	Certification Certification Certification Certification Certification Certification Certification Certification Certification Certification	Get - B Get - Ge

