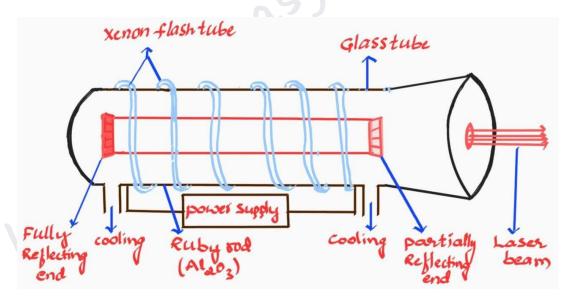
# **RUBY LASER**

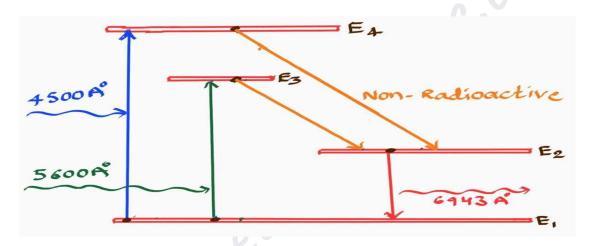
#### Introduction:


- Ruby is a solid state 3-level Laser and was the first laser, developed by H.T. Maiman in 1960.
- Ruby Laser emits Red light pulses and its pulsing time is 10 nanoseconds.
- ♦ Ruby is a crystal of Al<sub>2</sub>O<sub>3</sub>, in which Al<sup>+3</sup> ions are doped by 0.05% of Cr<sup>+3</sup> ions.

#### Principle:

❖ Due to optical pumping, chromium ions (Cr<sup>+3</sup>) in the ruby crystal are excited to a higher energy level, then undergo a non-radiative transition to a metastable state, from which stimulated emission to the ground state produces a laser beam.

#### **Main components:**


- ❖ Active medium: Chromium ions (Cr<sup>+3</sup>) in Ruby Crystal Rod.
- Pumping source: Xenon flash tube.
- ❖ Optical Resonator: Mirrors on either side of Ruby rod (Arrangement of Reflectors)
- Pumping mechanism: Excitation of Chromium ions (Cr<sup>+3</sup>) with in Ruby Crystal Rod Construction:



- In Ruby Laser, Ruby is taken in the form of a cylindrical rod of 4 cm in length and 1 cm in diameter.
- ❖ Ruby crystal is basically Al<sub>2</sub>O<sub>3</sub> in which Al<sup>+3</sup> ions are replaced by 0.05% of Cr<sup>+3</sup> ions, which will play a main role in the emission of laser beams.

- ❖ A Xenon flash tube is arranged around the Ruby rod, which supplies Green-Blue flash light of wavelengths 5600 A° & 4500A° respectively to the active medium, to achieve population inversion and heats up the apparatus.
- ❖ The two ends of Ruby are grounded and polished in such a way, one end (face) is silvered to achieve 100% reflection, while the other is partially silvered to make it transparent.
- A cooling arrangement is provided to keep the experimental setup at Normal temperature.

#### Working:



- ❖ Initially, chromium(Cr<sup>+3</sup>) ions within the Ruby rod are in their ground state E₁.
- ♦ When the xenon flash lamp is switched on, the ruby rod is irradiated by flash light of green wavelengths 5600A° and blue wavelengths 4500A°. By absorbing these wavelengths Cr<sup>+3</sup> ions get excited from E₁ to E₃ & E₄ respectively.
- ♦ But the excited  $Cr^{+3}$  ions in  $E_3$  &  $E_4$  will stay for a short time of  $10^{-8}$ s. After this lifetime most of the  $Cr^{+3}$  ions are deexcited to  $E_1$  at a rate of  $10^5$  atoms per second and  $E_2$  (metastable state) at a rate of  $10^7$  atoms per second.
- ❖ The metastable state E₂ has a longer lifetime, leading to an accumulation of Cr<sup>+3</sup> ions at this level as pumping continues. This accumulation of Cr<sup>+3</sup> ions in E₂ established a population inversion between E₂ and E₁.
- ♦ A few Cr<sup>+3</sup> ions spontaneously transition from E₂ to E₁, emitting incoherent photons in random directions. These spontaneously emitted photons are reflected by mirrors placed at the ends of the ruby rod.
- ♦ When these photons traveling along the axis of the rod can stimulate other excited Cr<sup>+3</sup> ions in the E₂ level to undergo stimulated emission which results in the release of

- photons that are coherent (same phase and frequency) and travel in the same direction as the stimulating photon.
- These stimulated photons further cause more stimulated emission as they travel along the axis of the rod, leading to amplification of the light.
- One of the mirrors is partially transparent, allowing a portion of the amplified, coherent light to emerge as a strong laser beam of wavelength 6943A°.
- Once stimulated transition commences, the state of population inversion disappears and lasing action ceases. The laser becomes active once again when the population inversion state is re-established.
- The output of a laser is not a continuous wave but occurs in the form of pulses of microsecond duration.

### Advantages/Salient features of Ruby Laser/Characteristics:

- (i) Uses a 3-level pumping scheme.
- (ii) The active centers are Cr+3 ions.
- (iii) Light from a xenon flash lamp is the pumping agent.
- (iv) High output intensity.
- (v) High acceptance band.
- (vi) operates in pulsed mode.

## **Drawbacks of Ruby Laser:**

- (i) It requires high pumping power.
- (ii)The efficiency of the Ruby laser is very poor.
- (iii) It has a low repetition rate.
- (iv)It has defects due to crystalline imperfections.
- (v)It has limited tuning.

#### **Applications/Uses of Ruby Laser:**

Ruby Lasers used in variety of applications

- (i) Holography
- (ii) Diamond drilling
- (iii) Medical applications
- (iv) Optically pumping dye lasers
- (v) Research purpose

**NOTE:** Ruby Lasers are not widely used nowadays because they are replaced by Nd: YAG Laser.