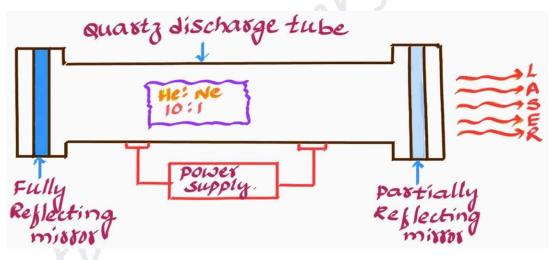
He-Ne LASER

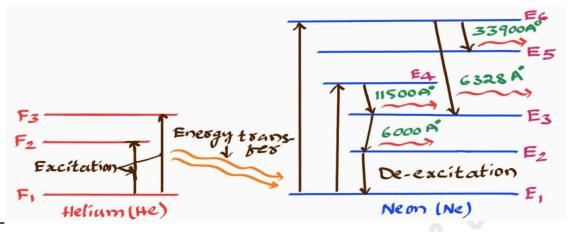
Introduction:

- The He-Ne Laser is a gaseous state 4-level laser and was fabricated by Javan, Bennett & Herriot in 1961.
- It is a continuous wave laser, which consists of a mixture of He & Ne in a 10:1 ratio.


Principle:

The principle of operation for the He-Ne laser is an electric discharge excited Helium atoms, which then transfer energy to Neon atoms through collisions, leading to population inversion and the emission of laser light at specific wavelengths

Main components:


- Active medium: He & Ne gas mixtures.
- Pumping source: Power supply (1000V) or R.F. Generator.
- Optical cavity: Arrangement of Reflector
- **Pumping mechanism:** Electrical discharge.

Construction:

- The He-Ne Laser consists of a Quartz discharge tube with a length of 80cm and diameter of 1.5 cm.
- This tube is filled with a He-Ne gas mixture of 10:1 ratio and maintains low pressure of 0.1 mm of Hg for He and 1 mm of Hg for Ne.
- Energy source of a laser is provided by an electrical discharge of around 1000V through an anode and cathode at each end of the quartz discharge tube to excite the active medium.
- Two reflecting mirrors are fixed on either ends of the discharge tube, in that, one is partially reflecting, and the other is fully reflecting.
- The output of the laser depends upon the length of the discharge tube and the pressure of the gas mixture.

Working:

- When an electrical discharge of approximately 1000V is applied across the tube via electrodes to energize the gas mixture, the electrons accelerate towards the positive electrode.
- During their passage, accelerated electrons collide with He atoms, exciting them to higher energy levels F₂ and F₃ from F₁,where the lifetime of He atoms is longer (So there is a maximum possibility of energy transfer between He and Ne atoms through atomic collisions).
- When He atoms present in the levels F₂ & F₃ collide with Ne atoms present in the ground state (E₁), the Ne atoms get excited into higher levels E₄ and E₆.
- This continuous excitation of Ne atoms leads to population inversion between the higher levels (E₄ & E₆) and lower levels (E₃ & E₅).
- The transitions from E₆ to E₅ and E₄ to E₃ in Ne atoms result in the emission of infrared radiation with wavelengths 33900 Å and 11500 Å, respectively.
- While the transition from E₆ to E₃ in Ne atoms produces visible light with a wavelength of 6328 Å and the Ne atoms in the E₃ level can spontaneously emit photons of wavelength 6000 Å and transition to the E₂ level..
- Finally, the Ne atoms present in the E₂ collide with the walls of the discharge tube and get de-excited to ground state E₁.

Advantages/Merits:

- Operates without damage at high temperature.
- Highly stable characteristics.
- Economic) Cheaper & No cooling required.
- Light emission in visible regions.

Disadvantages/De-merits:

- Low efficiency
- Low gain
- Limited to low power tasks.
- Mirrors are eroded by the gas discharge.

Applications/Uses:

- Used to demonstrate optical experiments in laboratories.
- Most commonly used in Holography, surveying & alignments in metrology.
- Used to read barcodes and used in scanners for optical character recognition.
- Used in medical dermatology.
- Used in Laser gyroscopes.
- Used in nano positioning of Semiconductor fabrication.
- Used in manufacturing of glass, plastic, microchips & printed circuit boards

ς.