1.6.HEISENBERG's UNCERTAINTY PRINCIPLE(HUP)

Introduction:

Werner Heisenberg proposed a very interesting principle in 1927, which is a direct

consequence of the dual nature of matter (wave-particle duality), known as HUP.

Statement:

• It is impossible to measure both the position and momentum of a particle simultaneously to any desired degree of accuracy.

Qualitative Explanation:

• The product of the uncertainties in the knowledge of position and momentum must be at least on the order of Planck's constant (h).

Mathematical Expression:

- More precisely, "The product of uncertainties in determining the position and momentum of the particle is never smaller than $h/4\pi$.
- Therefore, $\Delta x \cdot \Delta px \ge h/4\pi$ -----(1)

(OR)

 $\Delta x \cdot \Delta px \ge \hbar/2$ -----(2)

where: Δx is the uncertainty in position

 Δpx is the uncertainty in momentum

h is Planck's constant

Explanation:

<u>(i) If Δx = 0:</u>

 $\Delta x \cdot \Delta px = h/4\pi$

 $\Delta px = h/\Delta x.0$

∆px =h/0

∆px = ∞ -----(3)

Therefore, the position of a particle is measured accurately ($\Delta x = 0$), then the uncertainty in its momentum becomes infinite ($\Delta px = \infty$).

<u>(ii) If Δx = ∞:</u>

 $\Delta x \cdot \Delta px = h/4\pi$

 $\Delta x = h/\Delta px.0$ $\Delta x = h/0$ $\Delta x = \infty$(4)

Therefore, the momentum of a particle is measured accurately ($\Delta px = 0$), then the

uncertainty in its position becomes infinite ($\Delta x = \infty$).

Significance:

- HUP is significant for microscopic particles.
- It implies that the energy of a photon does not significantly affect the position and velocity of large objects.

Applications:

- (i)It helps in calculating the energy of a particle in a potential box.
- (ii)It proves the non-existence of electrons in the nucleus.
- (iii)It proves the existence of protons/neutrons in the nucleus.
- (iv)It calculates the binding energy of an electron in an atom.
- (v)Calculating the radius of Bohr's orbit in an atom.
- (vi)It determines the frequency of radiation emitted by an excited atom.