1.16.EFFECTIVE MASS OF ELECTRON (m*)

Definition: The mass of the electron, when it is accelerated in a periodic potential with

the help of an electric field is called the effective mass of the electron.

- Actually, the mass of an electron is varied when it is placed in a periodic potential and this varying mass is an effective mass of the electron. So, it depends on electron location.
- The effective mass is denoted by m* and it is -ve (or) +ve (or) infinite.
- It is given by $m^* = \hbar^2/(d^2E/dk^2)$

Derivation:

• Let us consider the free electron as a wave packet, then the group velocity (Vg) corresponding to angular velocity of a particle is

 $V_{q} = d\omega/dk$ ----- (1)

where: $k \rightarrow$ wave vector

 $\omega \rightarrow$ Angular velocity of electron

• Since $\boldsymbol{\omega} = 2\pi \boldsymbol{v} \rightarrow d\boldsymbol{\omega} = 2\pi d\boldsymbol{v}$

 $V_{g} = 2\pi \, dv/dk$ ----- (2)

• Since $E = hv \Rightarrow v = E/h \Rightarrow dv = dE/h$

 $V_{g} = 2\pi/h \ dE/dk$ ------ (3)

• But acceleration of an electron,

a = dv_g/dt

- = $2\pi/h$. d/dt (dE/dk)
- = $2\pi/h$. d²E/dk.1/dt
- $a = 1/\hbar d^2 E/dk^2 dk/dt$ ------ (4)
- We have, wave propagation vector

$$k = 2\pi/\lambda$$

$$k = 2\pi/(h/p) = 2\pi p/h$$
 (:: $\lambda = h/p$)

 $k = p/(h/2\pi) \Rightarrow k = p/\hbar \Rightarrow p = \hbar k \& dp/dt = \hbar dk/dt$

• Since dp/dt = F

 $F = \hbar dk/dt$ ----- (5)

- But F = m*a ------ (6)
- From (4) & (6): F = m* 1/ħ d²E/dk² dk/dt --- -----7)
- And rom (5) & (7): m* 1/ħ d²E/dk² dk/dt = ħ dk/dt

 $m^* = \hbar^2 / (d^2 E / dk^2) - (8)$

• This is the equation for effective mass of electrons.

Special Cases:

- If d²E/dk² is positive, then effective mass is positive.
- If d²E/dk² is negative, then effective mass is negative.
- If d²E/dk² = 0 then effective mass becomes infinity (∞).