1.7.BORN'S INTERPRETATION OF THE WAVE FUNCTION

Introduction:

In 1926, Max Born proposed his interpretation of the wave function, "stating that the

square of its amplitude (or modulus) is proportional to the probability density of finding a

particle at a given location".

- In the context of matter waves, a physical quantity that changes periodically is referred to as wave function.
- It is denoted by ψ(x,t), which should be finite, continuous and single valued for all x (position) and t (time).
- A wave function may be used to describe the probability of finding electrons within matter waves.
- Probability interpretation of wave function was given by Max Born in 1926.
- According to Born, the square of the magnitude of the wave function $|\psi|^2$ evaluated in a particular region represents the probability of finding the particles in that region.
- Probability (P) of finding the particle in an infinitesimal volume (dv)∝ |ψ (x, y, z)|² dxdydz at time t

$$\therefore P \propto |\psi(x, y, z)|^2 dv$$

(or)

 $P \propto |\psi|^2 dv$

• Since particle is certainly somewhere in a space \Rightarrow P = 1

```
Hence, \int |\psi|^2 dv = 1 in the interval - \infty to +\infty
```

- Generally, the wave function ψ is complex. But probability must be a real quantity.
 - \therefore To make probability real, ψ must be multiplied by its complex conjugate ψ^* .

Thus: $\int \psi \psi^* dv = 1$ in the interval - ∞ to + ∞

Here: $|\psi|^2 = \psi\psi^*$ and (dv = dx dy dz)

Significance:

- Even Though ψ has no physical significance,
 - $\rightarrow |\psi|^2$ gives the probability of finding the atomic particle in a particular region.

 $\rightarrow \psi = \psi_0 e^{-i\omega t}$ gives particle behavior.

 \rightarrow Normalization condition shows $\int |\psi|^2 dv = 1$. in the interval - ∞ to + ∞ to be satisfied by

wave function

Conditions to be satisfied by wave function:

An acceptable wave function
(i)ψ must be normalized:

Normalization condition shows $\int |\psi|^2 dv = 1$. in the interval - ∞ to + ∞ to be satisfied by

wave function.

(ii) ψ must be finite:

The wave function must be finite for all values of x, y, z. If ψ is infinite, it would imply an

infinitely large probability of finding the particle at that point.

(iii) ψ must be single valued:

Any physical quantity can have only one value at a point.

$(iv)\psi$ must be continuous:

Since ψ is related to a physical quantity, its space derivatives $\partial \psi / \partial x$, $\partial \psi / \partial y \& \partial \psi / \partial z$ must

be continuous at any point.

• The wave function satisfying the above mathematical conditions is called a well-behaved wave function.